Digital Signal Processing Lab 01: MATLAB Basics

Abdallah El Ghamry

The purpose of this Lab is to learn the basics of MATLAB including:

- MATLAB Environment
- Variables and Arrays
- Creating Vectors and Matrices
- Accessing, Adding Modifying, Deleting Array/Matrix Elements
- Predefined Special Values
- Common Array and Matrix Operations
- Common MATLAB Functions
- Character Arrays and Strings
- Complex Numbers
- Input-Output Functions

MATLAB

- MATLAB is an abbreviation for "matrix laboratory".
- While other programming languages mostly work with numbers,
 MATLAB is designed to operate primarily on matrices and arrays.
- The fundamental unit of data in MATLAB program is the array.
- An array is a collection of data values organized into rows and columns and known by a single name.
- Even scalars are treated as arrays by MATLAB, they are arrays with only one row and one column.

Typical Uses

- Digital Signal Processing
- Digital Image Processing
- Math and Computation
- Data Analysis, Exploration, and Visualization.
- Modeling and Simulation
- Scientific and Engineering Graphics
- Application Development Including GUIs.
- Algorithm Development
- Etc...

- Ease of Use
- Platform Independence

Windows XP/Vista/7, Linux, Unix, and the Macintosh.

Predefined Functions

MATLAB comes complete with an extensive library of predefined functions that provide solutions to many basic technical tasks.

- Graphical User Interface (GUI)
- EXTENSIVE Documentation.

MATLAB Desktop

📣 MATLAB R2018a		– o ×
HOME PLOTS APPS EDIT	OR PUBLISH VIEW	🕞 🔁 🕐 🔻 Search Documentation 🛛 🔎 Log In
Image: State Compare Image: State Compare Image: State Compare Image: State Compare	nt 🔜 fx 🖆 ▾ 📑 ▷ 🖳 Nun Section 🕑 nt % ‰ ‰ ↔	
v v v iii Print v Q Find v Inde	it 🛐 💀 🐨 → Advance Time	
FILE NAVIGATE	EDIT BREAKPOINTS RUN	A
← → 1 2 1 + C: ► Program Files ► MATLAB ► R2	J18a ▶ bin ▶	م ◄
	Latitor - Untitled	× workspace
Name A		Name Value
■ aicii ■ I m3iregistry		x 10
🗄 📜 registry		y ,
🗄 📙 util		
ter in win64	MATIAD Editor	
deploytool.bat		
🖹 Icdata.xml		
Lcdata.xsd		
Icdata_utf8.xml		
Matlab.exe		
M mcc.bat	Command Window	
imex.bat	Command window	Worksnace
a mex.pl		- WUIRspace
mexetup pm	>> x=10	
mexutils.pm	x =	
mw_mpiexec.bat		
🚳 worker.bat	10	
	>> y=7	
Current Folder	Command Window	
	7	
Browser		
	$f_{x} >>$	
Details		
·····		

Command Window

A window where the user can type commands and see results.

Workspace Browser

A window that displays the names and values of variables stored in the MATLAB Workspace.

Current Folder Browser

A window that displays the names of files in the current directory.

MATLAB Editor

Where scripts are created and edited.

Variables and Arrays

- Arrays can be classified as either vectors or matrices.
- The term "vector" is usually used to describe an array with only one dimension.
- The term "matrix" is usually used to describe an array with two or more dimensions.

- A MATLAB variable is a region of memory containing an array and is known by a user-specified name.
- MATLAB variable names must begin with a letter, followed by any combination of letters, numbers, and underscore _.
- The MATLAB language is case-sensitive, which means that uppercase and lowercase letters are not the same.
- When naming a variable, make sure you are not using a name that is already used as a function name.

Creating and Initializing Variables

• Variables are automatically created when they are initialized.

var = expression;

3

Creating and Initializing Variables

>> x = 20; >> y = 5; >> sig = x + y sig = 25 \rightarrow diff = x - y diff = 15 >> prod = x * yprod = 100 \rightarrow div = x / y div =

4

Workspace	
Name 🔺	Value
🛨 diff	15
🛨 div	4
🛨 prod	100
🛨 sig	25
x	20
🛨 y	5

Table 2.5: Arithmetic Operations between Two Scalars

Operation	Algebraic Form	MATLAB Form
Addition	a + b	a + b
Subtraction	a-b	a - b
Multiplication	$a \times b$	a * b
Division	$\frac{a}{b}$	a / b
Exponentiation	a^b	a î b

Hierarchy of Arithmetic Operations

Table 2.7: Hierarchy of Arithmetic Operations

Precedence	Operation
1	The contents of all parentheses are evaluated, starting from the innermost parentheses and working outward.
2	All exponentials are evaluated, working from left to right.
3	All multiplications and divisions are evaluated, working from left to right.
4	All additions and subtractions are evaluated, working from left to right.

$$2^{((8+2)/5)} = 2^{(10/5)} = 2^{2} = 4$$

>> 2 ^ ((8 + 2)/5) ans =

>>
$$r = [7 8 9 10 11]$$

 $r =$
7 8 9 10 11
>> $r = [7, 8, 9, 10, 11]$
 $r =$
7 8 9 10 11
>> $r = [7, 8 9 10, 11]$
 $r = [7, 8 9 10, 11]$
 $r =$
7 8 9 10 11

Creating Column Vectors

>> c = [7; 8; 9; 10; 11] C =

Creating Matrices

>> m = [1 2 3; 4 5 6; 7 8 9]

m =

123456789

Accessing Array Elements

```
>> x = [11 55 88 77 63 45]
X =
        55 88 77 63
   11
                            45
>> x(2)
ans =
   55
>> x(2:end)
ans =
        88 77 63
   55
                      45
>> x(3: end-1)
ans =
         77
              63
   88
```

Adding and Modifying Array Elements

>> X X = >> x(end + 1) = 99 X = >> x(2) = 22X = >> x(end + 1: end + 3) = 7X =

Deleting Array Elements

>> X X = 88 77 45 99 7 7 7 11 22 63 >> x(2:4) = []X = 63 45 99 7 7 11 7 >> x(end) = [] x = 63 45 99 7 7 11 >> x = [] X = []

>> a = [1 2 3; 4 5 6; 7 8 9; 10 11 12] a = 1 2 3 4 5 6 8 7 9 10 11 12 >> r3 = a(3, :) r3 =8 7 9

>> a				
a =				
1	2	3		
4	5	6		
7	8	9		
10	11	12		
>> c2 = a	a(:, 2)		
c2 =				
2				
5				
8				
11				

>> a(:, 2) = -1 a = 1 -1 3 4 -1 6 7 -1 9 10 -1 12 >> a(4, :) = [] a = 1 -1 3 4 -1 6 7 -1 9

>> arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =

1	2	3	4
5	6	7	8
9	10	11	12

>> arr4(2:end,2:end)
ans =

6 7 8

10

11 12

- MATLAB provides a special shortcut notation using the colon operator.
- The colon operator specifies a whole series of values by specifying the first value in the series, the stepping increment, and the last value in the series.
- The general form of a colon operator is

first:incr:last

Colon Operator: Examples

>> x = 1:2:10X = 3 5 7 9 1 >> y = 1:10У = 2 3 4 5 6 7 8 1 9 10 >> z = 10:-2:0 Z = 8 6 4 2 10 0

Creating Variables: Examples

[3.4]	This expression creates a 1×1 array (a scalar) containing the value 3.4. The brackets are not required in this case.		
[1.0 2.0 3.0]	This expression creates a 1×3 array containing the row vector $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$.		
[1.0; 2.0; 3.0]	This expression creates a 3 × 1 array containing the column vector $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.		
[1, 2, 3; 4, 5, 6]	This expression creates a 2 × 3 array containing the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.		
[1, 2, 3	This expression creates a 2 × 3 array containing the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.		
4, 5, 6]	The end of the first line terminates the first row.		
[]	This expression creates an empty array , which contains no rows and no columns. (Note that this is not the same as an array containing zeros.)		

Predefined Special Values

Table 2.2: Predefined Special Values

Function	Purpose
pi	Contains π to 15 significant digits.
i, j	Contain the value $i(\sqrt{-1})$.
Inf	This symbol represents machine infinity. It is usually generated as a result of a division by 0.
NaN	This symbol stands for Not-a-Number. It is the result of an undefined mathematical operation, such as the division of zero by zero.
clock	This special variable contains the current date and time in the form of a 6-element row vector containing the year, month, day, hour, minute, and second.
date	Contains the current data in a character string format, such as 24-Nov-1998.
eps	This variable name is short for "epsilon." It is the smallest differ- ence between two numbers that can be represented on the computer.
ans	A special variable used to store the result of an expression if that result is not explicitly assigned to some other variable.

>> pi ans = 3.1416 >> i ans = 0.0000 + 1.0000i >> nan ans = NaN

Table 2.1: MATLAB Functions Useful for Initializing Variables

Function	Purpose
zeros(n)	Generates an $n \times n$ matrix of zeros.
zeros(m,n)	Generates an $m \times n$ matrix of zeros.
<pre>zeros(size(arr))</pre>	Generates a matrix of zeros of the same size as arr.
ones(n)	Generates an $n \times n$ matrix of ones.
ones(m,n)	Generates an $m \times n$ matrix of ones.
ones(size(arr))	Generates a matrix of ones of the same size as arr.
eye(n)	Generates an $n \times n$ identity matrix.
eye(m,n)	Generates an $m \times n$ identity matrix.
length(arr)	Returns the length of a vector, or the longest dimension of a two-dimensional array.
numel(arr)	Returns the total number of elements in an array, which is the product of the number of rows times the number of columns.
size(arr)	Returns two values specifying the number of rows and columns in arr.

Initializing with Built-in Functions

These statements generate the following arrays:

$$a = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$c = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad d = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Initializing with Built-in Functions: Examples

1

```
>> zeros(3, 3)
ans =
     0
   0
           0
   0 0 0
   0
       0
          0
>> ones(3, 4)
ans =
    1 1 1
   1
   1 1 1 1
         1
       1
   1
```

Initializing with Built-in Functions: Examples

>> size(ans)

ans =

3 4

Table 2.6: Common Array and Matrix Operations

Operation	MATLAB Form	Comments
Array Addition	a + b	Array addition and matrix addition are identical.
Array Subtraction	a - b	Array subtraction and matrix subtraction are identical.
Array Multiplication	a .* b	Element-by-element multiplication of a and b. Both arrays must be the same shape, or one of them must be a scalar.
Matrix Multiplication	a * b	Matrix multiplication of a and b. The number of columns in a must equal the number of rows in b.
Array Right Division	a ./ b	Element-by-element division of a and b: a(i,j) / b(i,j). Both arrays must be the same shape, or one of them must be a scalar.
Array Left Division	a.\b	Element-by-element division of a and b, but with b in the numerator: $b(i,j) / a(i,j)$. Both arrays must be the same shape, or one of them must be a scalar.
Matrix Right Division	a / b	Matrix division defined by a * inv(b), where inv(b) is the inverse of matrix b.
Matrix Left Division	a \ b	Matrix division defined by inv(a) * b, where inv(a) is the inverse of matrix a.
Array Exponentiation	a .^ b	Element-by-element exponentiation of a and b: a(i,j) b(i,j). Both arrays must be the same shape, or one of them must be a scalar.

$$a = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$$
$$c = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \qquad d = 5$$

What is the result of each of the following expressions?

(a)	а	+ b	(e)	а	+	С
(b)	а	.* b	(f)	а	+	d
(c)	а	* b	(g)	а	. *	d
(d)	а	* C	(h)	а	*	d

```
>> a = [1 0; 2 1]
a =
    1
       0
    2
          1
>> b = [-1 2; 0 1]
b =
    -1 2
    0
          1
>> c = [3;2]
C =
    3
    2
>> d = 5
d = 5
```

>> a + b ans = 0 2 2 2 >> a + c ans = 3 4 3 4 >> a .* b ans = 0 -1 1 0

>> a * b ans = -1 2 5 -2 >> a * c ans = 3 8 >> a + d ans = 5 6 7 6

>> a .* d ans = 5 0 10 5 >> a * d ans = 5 0 5 10

Matrix Transpose

```
>> arr = [1 2 3 4]
arr =
    1 2 3 4
>> arr'
ans =
    1
    2
    3
    4
```

Matrix Transpose

arr =

1	2	3	4
5	6	7	8
9	10	11	12

>> arr'

ans =

1	5	9
2	6	10
3	7	11
4	8	12

Common MATLAB Functions

Table 2.8: Common MATLAB Functions

Function	Description	
Mathematical Functions		
abs(x)	Calculates the absolute value $ x $.	
acos(x)	Calculates $\cos^{-1}x$ (results in radians).	
acosd(x)	Calculates $\cos^{-1}x$ (results in degrees).	
angle(x)	Returns the phase angle of the complex value x, in radians.	
asin(x)	Calculates $\sin^{-1}x$ (results in radians).	
asind(x)	Calculates $\sin^{-1}x$ (results in degrees).	
atan(x)	Calculates $\tan^{-1}x$ (results in radians).	
atand(x)	Calculates $\tan^{-1}x$ (results in degrees).	
atan2(y,x)	Calculates $\theta = \tan^{-1} \frac{y}{x}$ over all four quadrants of the circle	
	(results in radians in the range $-\pi \le \theta \le \pi$).	
atan2d(y,x)	Calculates $\theta = \tan^{-1} \frac{y}{x}$ over all four quadrants of the circle	
	(results in degrees in the range $-180^{\circ} \le \theta \le 180^{\circ}$).	
cos(x)	Calculates $\cos x$, with x in radians.	
cosd(x)	Calculates $\cos x$, with x in degrees.	
exp(x)	Calculates e^x .	
log(x)	Calculates the natural logarithm $\log_e x$.	
log10(x)	Calculates the logarithm to the base $10 \log_{10} x$.	

Common MATLAB Functions

Table 2.8: Common MATLAB Functions (Continued)

[value, index] = max(x)	Returns the maximum value in vector <i>x</i> , and optionally the location of that value.
[value, index] = min(x)	Returns the minimum value in vector <i>x</i> , and optionally the location of that value.
mod(x, y)	Remainder or modulo function.
sin(x)	Calculates sin x, with x in radians.
sind(x)	Calculates $\sin x$, with x in degrees.
sqrt(x)	Calculates the square root of <i>x</i> .
tan(x)	Calculates tan x, with x in radians.
tand(x)	Calculates $\tan x$, with x in degrees.
	Rounding Functions
ceil(x)	Rounds x to the nearest integer toward positive infinity: ceil(3.1) = 4 and $ceil(-3.1) = -3$.
fix(x)	Rounds x to the nearest integer toward zero: $fix(3.1) = 3$ and $fix(-3.1) = -3$.
floor(x)	Rounds x to the nearest integer toward minus infinity: floor(3.1) = 3 and floor(-3.1) = -4.
round(x)	Rounds x to the nearest integer.

char(x)	Converts a matrix of numbers into a character array. For ASCII characters the matrix should contain numbers ≤ 127 .
double(x)	Converts a character array into a matrix of numbers.
int2str(x)	Converts the value of <i>x</i> into an character array representing the nearest integer.
num2str(x)	Converts the value of x into a character array representing the number.
str2num(c)	Converts character array c into a numeric array.

Common MATLAB Functions: Examples

```
>> maxval = max ([1 -5 6 -3])
maxval =
     6
>> [maxval, index] = max ([1 -5 6 -3])
maxval =
     6
index =
     3
>> sqrt(25)
ans =
     5
>> exp(1)
ans =
    2.7183
```

Simultaneous Linear Equations

A 3×3 set of simultaneous linear equations takes the form

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$
$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$
$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$$

which can be expressed as

$$Ax = B$$

where
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

If A is a non-singular matrix, the result is

$$x = A^{-1}B$$

٠

Simultaneous Linear Equations

```
>> A = [2 \ 1 \ 1; \ -1 \ 1 \ -1; \ 1 \ 2 \ 3]
A =
     2
           1 1
    -1 1 -1
           2 3
     1
>> B = [2; 3; -10]
B =
     2
     3
   -10
>> x = inv(A) * B
x =
     3
     1
    -5
```

$$2x + y + z = 2$$
$$-x + y - z = 3$$
$$x + 2y + 3z = -10$$

Character Arrays

- Each element of a character array stores a single character.
- A MATLAB character array is an array of type char.
- Each character is stored in two bytes of memory.
- Character array constants are defined using text strings surrounded by single quotes:

```
s = 'Hello, world';
```

• By default, MATLAB uses the Unicode character set.

; 'الحمد لله' = s

>> seq =	'GCTAGAATCC';			
>> whos s	eq			
Name	Size	Bytes	Class	Attributes
seq	1x10	20	char	
>> seq(4)				
ans =				
'A'				
<pre>>> length</pre>	(seq)			
ans =				
10				

Character Arrays

```
>> chr = 'Hello, world'
>> chr(end)
ans =
    'd'
>> chr(end + 1) = '!'
chr =
    'Hello, world!'
>> chr(1:5)
ans =
    'Hello'
```


- Strings are defined using text strings surrounded by double quotes:
 - >> s = "Hello, world"
 - S =

"Hello, world"

>> whos s

Name	Size	Bytes	Class	Attributes
S	1x1	150	string	

>> strlength(s)

ans =

12

```
>> A = ["a","bb","ccc"; "dddd","eeeeee","fffffff"]
A =
```

2×3 string array
 "a" "bb" "ccc"
 "dddd" "eeeeee" "fffffff"

Strings

>> f = 71;

>> c = (f-32)/1.8;

>> tempText = "Temperature is " + c + "C"

tempText =

```
"Temperature is 21.6667C"
```

Complex Numbers

• A general complex number is in the form

c = a + bi

- The number *a* is called the real part and *b* is called the imaginary part of the complex number *c*.
- Where $i = \sqrt{-1}$
- In MATLAB, i and j represent the basic imaginary unit.
- Complex numbers will be used in working with signals, linear systems and various transforms.

Representing Complex Numbers in Rectangular Coordinates

- Since a complex number has two components, it can be plotted as a point on a plane using rectangular coordinates.
- The horizontal axis of the plane is the real axis, and the vertical axis of the plane is the imaginary axis.

Representing Complex Numbers in Polar Coordinates

- A complex number can also be represented as a vector of length z and angle θ pointing from the origin of the plane to the point P.
- A complex number represented this way is said to be in polar coordinates.

$$z = \sqrt{a^2 + b^2}$$
$$\theta = \tan^{-1}\frac{b}{a}$$
$$a = z\cos\theta$$
$$b = z\sin\theta$$

Complex Numbers

```
sqrt(-1)
ans = 0.0000 + 1.0000i
>> c = 3 + 4i
c = 3.0000 + 4.0000i
>> real(c)
ans = 3
>> imag(c)
ans = 4
>> abs(c)
ans = 5
>> angle(c)
ans = 0.9273
```

Displaying Output Data

- When data is echoed in the Command Window, values are printed using a default format.
- The default format shows four digits after the decimal point.
 >> sqrt(5)
 ans =

2.2361

- Values may be displayed in scientific notation with an exponent if the number is too large or too small.
 - >> 100000000

ans = 1.0000e+09

Displaying Output Data

• The format command changes the default format according to the values given in Table 2.3

Table 2.3: Output Display Formats

Format Command	Results	Example ¹
format short	4 digits after decimal (default format)	12.3457
format long	14 digits after decimal	12.34567890123457
format short e	5 digits plus exponent	1.2346e+001
format short eng	5 digits plus exponent digits plus expo- nent with exponent being powers of 1000	12.347e+000
format short g	5 total digits with or without exponent	12.346
format long e	15 digits plus exponent	1.234567890123457e+001
format long eng	15 digits plus exponent with exponent being powers of 1000	12.34567890123457e+000
format long g	15 total digits with or without exponent	12.3456789012346
format hex	hexadecimal display of bits	4028b0fcd32f707a

Displaying Output Data

Another way to display data is with the disp function.
 >> disp([1 2 3])

1 2 3

- >> disp('Hello World.')
 Hello World.
- >> A = [1 2; 3 4];
- >> disp(A)

1 2 3 4

- >> format long
- >> disp(sqrt(5))

2.236067977499790

- An even more flexible way to display data is with the fprintf function.
- The fprintf function lets the programmer control the way that the displayed value appears.

Format String	Results
%d	Display value as an integer.
%e	Display value in exponential format.
%f	Display value in floating-point format.
%g	Display value in either floating-point or exponential format, whichever is shorter.
\n	Skip to a new line.

```
>> fprintf('The value of pi is \% f \ pi)
The value of pi is 3.141593
>> fprintf('The value of pi is \%.2f \n', pi)
The value of pi is 3.14
>> fprintf('The value of pi is %e \n', pi)
The value of pi is 3.141593e+00
>> fprintf('The value of sqrt(25) is \% f \ \ sqrt(25))
The value of sqrt(25) is 5.000000
>> fprintf('The value of sqrt(25) is %d \setminus n', sqrt(25))
The value of sqrt(25) is 5
```

User Input

```
>> x = input('Enter data: ');
Enter data: 5
>> disp(x)
5
```

```
>> s = input('Enter string: ');
Enter string: 'DSP'
>> s
s =
```

'DSP'

User Input

```
>> A = input('Enter data: ');
Enter data: [1 2; 3 4]
>> disp(A)
    1
      2
    3 4
>> expr = input('Enter data: ');
Enter data: 5+6-4
>> expr
expr =
     7
```

User Input

```
>> s = input('Enter string: ');
Enter string: 2.7
>> s
S =
   2.700000000000000
>> s = input('Enter string: ', 's');
Enter string: 2.7
>> s
S =
    '2.7'
```