
Digital Signal Processing

Lab 01: MATLAB Basics
Abdallah El Ghamry

MATLAB

The purpose of this Lab is to learn the basics of MATLAB including:

▪ MATLAB Environment

▪ Variables and Arrays

▪ Creating Vectors and Matrices

▪ Accessing, Adding Modifying, Deleting Array/Matrix Elements

▪ Predefined Special Values

▪ Common Array and Matrix Operations

▪ Common MATLAB Functions

▪ Character Arrays and Strings

▪ Complex Numbers

▪ Input-Output Functions

MATLAB

▪ MATLAB is an abbreviation for “matrix laboratory”.

▪ While other programming languages mostly work with numbers,

MATLAB is designed to operate primarily on matrices and arrays.

▪ The fundamental unit of data in MATLAB program is the array.

▪ An array is a collection of data values organized into rows and

columns and known by a single name.

▪ Even scalars are treated as arrays by MATLAB, they are arrays with

only one row and one column.

Typical Uses

▪ Digital Signal Processing

▪ Digital Image Processing

▪ Math and Computation

▪ Data Analysis, Exploration, and Visualization.

▪ Modeling and Simulation

▪ Scientific and Engineering Graphics

▪ Application Development Including GUIs.

▪ Algorithm Development

▪ Etc…

Why MATLAB?

▪ Ease of Use

▪ Platform Independence

Windows XP/Vista/7, Linux, Unix, and the Macintosh.

▪ Predefined Functions

MATLAB comes complete with an extensive library of predefined

functions that provide solutions to many basic technical tasks.

▪ Graphical User Interface (GUI)

▪ EXTENSIVE Documentation.

MATLAB Desktop

Command Window

Workspace

MATLAB Editor

Current Folder

Browser

MATLAB Desktop

▪ Command Window

A window where the user can type commands and see results.

▪ Workspace Browser

A window that displays the names and values of variables stored in

the MATLAB Workspace.

▪ Current Folder Browser

A window that displays the names of files in the current directory.

▪ MATLAB Editor

Where scripts are created and edited.

Variables and Arrays

▪ Arrays can be classified as either vectors or matrices.

▪ The term “vector” is usually used to describe an array with only one

dimension.

▪ The term “matrix” is usually used to describe an array with two or

more dimensions.

Variables and Arrays

▪ A MATLAB variable is a region of memory containing an array and

is known by a user-specified name.

▪ MATLAB variable names must begin with a letter, followed by any

combination of letters, numbers, and underscore _.

▪ The MATLAB language is case-sensitive, which means that

uppercase and lowercase letters are not the same.

▪ When naming a variable, make sure you are not using a name that is

already used as a function name.

Creating and Initializing Variables

▪ Variables are automatically created when they are initialized.

var = expression;

>> a = 1

a =

1

>> b = 2

b =

2

>> c = a + b

c =

3

Creating and Initializing Variables

>> x = 20;

>> y = 5;

>> sig = x + y

sig =

25

>> diff = x - y

diff =

15

>> prod = x * y

prod =

100

>> div = x / y

div =

4

Arithmetic Operations between Two Scalars

Hierarchy of Arithmetic Operations

2 ^ ((8 + 2)/5) = 2 ^ (10/5)

= 2 ^ 2

= 4

>> 2 ^ ((8 + 2)/5)
ans =

4

Creating Row Vectors

>> r = [7 8 9 10 11]

r =

7 8 9 10 11

>> r = [7, 8, 9, 10, 11]

r =

7 8 9 10 11

>> r = [7, 8 9 10, 11]

r =

7 8 9 10 11

Creating Column Vectors

>> c = [7; 8; 9; 10; 11]

c =

7

8

9

10

11

Creating Matrices

>> m = [1 2 3; 4 5 6; 7 8 9]

m =

1 2 3

4 5 6

7 8 9

Accessing Array Elements

>> x = [11 55 88 77 63 45]

x =

11 55 88 77 63 45

>> x(2)

ans =

55

>> x(2:end)

ans =

55 88 77 63 45

>> x(3: end-1)

ans =

88 77 63

Adding and Modifying Array Elements

>> x

x =

11 55 88 77 63 45

>> x(end + 1) = 99

x =

11 55 88 77 63 45 99

>> x(2) = 22

x =

11 22 88 77 63 45 99

>> x(end + 1: end + 3) = 7

x =

11 22 88 77 63 45 99 7 7 7

Deleting Array Elements

>> x

x =

11 22 88 77 63 45 99 7 7 7

>> x(2:4) = []

x =

11 63 45 99 7 7 7

>> x(end) = []

x =

11 63 45 99 7 7

>> x = []

x =

[]

Accessing Matrix Elements

>> a = [1 2 3; 4 5 6; 7 8 9; 10 11 12]

a =

1 2 3

4 5 6

7 8 9

10 11 12

>> r3 = a(3, :)

r3 =

7 8 9

Accessing Matrix Elements

>> a

a =

1 2 3

4 5 6

7 8 9

10 11 12

>> c2 = a(:, 2)

c2 =

2

5

8

11

Accessing Matrix Elements

>> a(:, 2) = -1

a =

1 -1 3

4 -1 6

7 -1 9

10 -1 12

>> a(4, :) = []

a =

1 -1 3

4 -1 6

7 -1 9

Accessing Matrix Elements

>> arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]

arr4 =

1 2 3 4

5 6 7 8

9 10 11 12

>> arr4(2:end,2:end)

ans =

6 7 8

10 11 12

Colon Operator

▪ MATLAB provides a special shortcut notation using the colon

operator.

▪ The colon operator specifies a whole series of values by specifying

the first value in the series, the stepping increment, and the last value

in the series.

▪ The general form of a colon operator is

first:incr:last

Colon Operator: Examples

>> x = 1:2:10

x =

1 3 5 7 9

>> y = 1:10

y =

1 2 3 4 5 6 7 8 9 10

>> z = 10:-2:0

z =

10 8 6 4 2 0

Creating Variables: Examples

Predefined Special Values

Predefined Special Values: Examples

>> pi

ans =

3.1416

>> i

ans =

0.0000 + 1.0000i

>> nan

ans =

NaN

Initializing with Built-in Functions

Initializing with Built-in Functions

Initializing with Built-in Functions: Examples

>> zeros(3, 3)

ans =

0 0 0

0 0 0

0 0 0

>> ones(3, 4)

ans =

1 1 1 1

1 1 1 1

1 1 1 1

Initializing with Built-in Functions: Examples

>> eye(3, 4)

ans =

1 0 0 0

0 1 0 0

0 0 1 0

>> size(ans)

ans =

3 4

Common Array and Matrix Operations

Common Array and Matrix Operations

Common Array and Matrix Operations

>> a = [1 0; 2 1]

a =

1 0

2 1

>> b = [-1 2; 0 1]

b =

-1 2

0 1

>> c = [3;2]

c =

3

2

>> d = 5

d = 5

Common Array and Matrix Operations

>> a + b

ans =

0 2

2 2

>> a + c

ans =

4 3

4 3

>> a .* b

ans =

-1 0

0 1

Common Array and Matrix Operations

>> a * b

ans =

-1 2

-2 5

>> a * c

ans =

3

8

>> a + d

ans =

6 5

7 6

Common Array and Matrix Operations

>> a .* d

ans =

5 0

10 5

>> a * d

ans =

5 0

10 5

Matrix Transpose

>> arr = [1 2 3 4]

arr =

1 2 3 4

>> arr'

ans =

1

2

3

4

Matrix Transpose

>> arr = [1 2 3 4; 5 6 7 8; 9 10 11 12]

arr =

1 2 3 4

5 6 7 8

9 10 11 12

>> arr'

ans =

1 5 9

2 6 10

3 7 11

4 8 12

Common MATLAB Functions

Common MATLAB Functions

Common MATLAB Functions

Common MATLAB Functions: Examples

>> maxval = max ([1 -5 6 -3])

maxval =

6

>> [maxval, index] = max ([1 -5 6 -3])

maxval =

6

index =

3

>> sqrt(25)

ans =

5

>> exp(1)

ans =

2.7183

Simultaneous Linear Equations

If A is a non-singular matrix, the result is

Simultaneous Linear Equations

>> A = [2 1 1; -1 1 -1; 1 2 3]

A =

2 1 1

-1 1 -1

1 2 3

>> B = [2; 3; -10]

B =

2

3

-10

>> x = inv(A) * B

x =

3

1

-5

Character Arrays

▪ Each element of a character array stores a single character.

▪ A MATLAB character array is an array of type char.

▪ Each character is stored in two bytes of memory.

▪ Character array constants are defined using text strings surrounded

by single quotes:

s = 'Hello, world';

▪ By default, MATLAB uses the Unicode character set.

s = 'الحمد لله' ;

Character Arrays

>> seq = 'GCTAGAATCC';

>> whos seq

Name Size Bytes Class Attributes

seq 1x10 20 char

>> seq(4)

ans =

'A'

>> length(seq)

ans =

10

Character Arrays

>> chr = 'Hello, world'

>> chr(end)

ans =

'd'

>> chr(end + 1) = '!'

chr =

'Hello, world!'

>> chr(1:5)

ans =

'Hello'

Strings

▪ Strings are defined using text strings surrounded by double quotes:

>> s = "Hello, world"

s =

"Hello, world"

>> whos s

Name Size Bytes Class Attributes

s 1x1 150 string

>> strlength(s)

ans =

12

Strings

>> A = ["a","bb","ccc"; "dddd","eeeeee","fffffff"]

A =

2×3 string array

"a" "bb" "ccc"

"dddd" "eeeeee" "fffffff"

>> strlength(A)

ans =

1 2 3

4 6 7

Strings

>> f = 71;

>> c = (f-32)/1.8;

>> tempText = "Temperature is " + c + "C"

tempText =

"Temperature is 21.6667C"

Complex Numbers

▪ A general complex number is in the form

c = a + bi

▪ The number a is called the real part and b is called the imaginary part

of the complex number c.

▪ Where i = −1

▪ In MATLAB, i and j represent the basic imaginary unit.

▪ Complex numbers will be used in working with signals, linear

systems and various transforms.

Representing Complex Numbers in Rectangular Coordinates

▪ Since a complex number has two components, it can be plotted as a

point on a plane using rectangular coordinates.

▪ The horizontal axis of the plane is the real axis, and the vertical axis

of the plane is the imaginary axis.

Representing Complex Numbers in Polar Coordinates

▪ A complex number can also be represented as a vector of length z

and angle θ pointing from the origin of the plane to the point P.

▪ A complex number represented this way is said to be in polar

coordinates.

Complex Numbers

sqrt(-1)

ans = 0.0000 + 1.0000i

>> c = 3 + 4i

c = 3.0000 + 4.0000i

>> real(c)

ans = 3

>> imag(c)

ans = 4

>> abs(c)

ans = 5

>> angle(c)

ans = 0.9273

Displaying Output Data

▪ When data is echoed in the Command Window, values are printed

using a default format.

▪ The default format shows four digits after the decimal point.

>> sqrt(5)

ans =

2.2361

▪ Values may be displayed in scientific notation with an exponent if

the number is too large or too small.

>> 1000000000

ans = 1.0000e+09

Displaying Output Data

▪ The format command changes the default format according to the

values given in Table 2.3

Displaying Output Data

▪ Another way to display data is with the disp function.

>> disp([1 2 3])

1 2 3

>> disp('Hello World.')

Hello World.

>> A = [1 2; 3 4];

>> disp(A)

1 2

3 4

>> format long

>> disp(sqrt(5))

2.236067977499790

Formatted Output

▪ An even more flexible way to display data is with the fprintf

function.

▪ The fprintf function lets the programmer control the way that the

displayed value appears.

Formatted Output

>> fprintf('The value of pi is %f \n', pi)

The value of pi is 3.141593

>> fprintf('The value of pi is %.2f \n', pi)

The value of pi is 3.14

>> fprintf('The value of pi is %e \n', pi)

The value of pi is 3.141593e+00

>> fprintf('The value of sqrt(25) is %f \n', sqrt(25))

The value of sqrt(25) is 5.000000

>> fprintf('The value of sqrt(25) is %d \n', sqrt(25))

The value of sqrt(25) is 5

User Input

>> x = input('Enter data: ');

Enter data: 5

>> disp(x)

5

>> s = input('Enter string: ');

Enter string: 'DSP'

>> s

s =

'DSP'

User Input

>> A = input('Enter data: ');

Enter data: [1 2; 3 4]

>> disp(A)

1 2

3 4

>> expr = input('Enter data: ');

Enter data: 5+6-4

>> expr

expr =

7

User Input

>> s = input('Enter string: ');

Enter string: 2.7

>> s

s =

2.700000000000000

>> s = input('Enter string: ', 's');

Enter string: 2.7

>> s

s =

'2.7'

